Measurement precision bounds on aberrated single molecule emission patterns

Author:

Fang Li,Huang Fang

Abstract

ABSTRACTSingle-Molecule Localization Microscopy (SMLM) has revolutionized the study of biological phenomena by providing exquisite nanoscale spatial resolution. However, optical aberrations induced by sample and system imperfections distort the single molecule emission patterns (i.e. PSFs), leading to reduced precision and resolution of SMLM, particularly in three-dimensional (3D) applications. While various methods, both analytical and instrumental, have been employed to mitigate these aberrations, a comprehensive analysis of how different types of commonly encountered aberrations affect single molecule experiments and their image formation remains missing. In this study, we addressed this gap by conducting a quantitative study of the theoretical precision limit for position and wavefront distortion measurements in the presence of aberrations. Leveraging Fisher information and Cramér-Rao lower bound (CRLB), we quantitively analyzed and compared the effects of different aberration types, including index mismatch aberrations, on localization precision in both biplane and astigmatism 3D modalities as well as 2D SMLM imaging. Furthermore, we studied the achievable wavefront estimation precision from aberrated single molecule emission patterns, a pivot step for successful adaptive optics in SMLM through thick specimens. This analysis lays a quantitative foundation for the development and application of SMLM in whole-cells, tissues and with large field of view, providing in-depth insights into the behavior of different aberration types in single molecule imaging and thus generating theoretical guidelines for developing highly efficient aberration correction strategies and enhancing the precision and reliability of 3D SMLM.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3