Flock response to sustained asynchronous predator attacks

Author:

Mohapatra SiddhantORCID,Mahapatra Pallab SinhaORCID

Abstract

AbstractCollective behaviour is a ubiquitous emergent phenomenon where organisms share information and conduct complicated manoeuvres as a group. Dilution of predation risk is presumed to be a major proponent contributing towards the emergence of such fascinating behaviour. However, the role of multiple sources of predation risk in determining the characteristics of the escape manoeuvres remains largely unexplored. The current work aims to address this paucity by examining the response of a flock to multiple persistently pursuing predators, using an agent-based approach employing a force-based model. Collective features such as herding, avoiding and split-and-join are observed across a wide spectrum of systemic conditions. The transition from one response state to another is examined as a function of the relative angle of predator attack, a parameter exclusive to multi-predator systems. Other concomitant parameters, such as the frequency of attacks and compatibility of target selection tactics of the predators, have a significant effect on the escape probability of the prey (i.e., the success rate of escape manoeuvres). A quantitative analysis has been carried out to determine the most successful combination of target selection while also focusing on beneficial ancillary effects such as flock splitting. The long-term dynamics of the system indicate a faster decay of prey numbers (higher prey mortality) at higher coordination strength due to a monotonically decreasing relation between coordination strength and prey speed supplanted by coincidental synchrony of predator attacks. The work highlights the non-additive nature of the effects of predation in a multi-predator system and urges further scrutiny of group hunting dynamics in such systems.Author summaryCollective motion is a natural phenomenon observed across a wide range of length and time scales. One purported reason for the development of such behaviour is to reduce the individual risk of predation through the many-eyes effect and group manoeuvring in case of attacks. However, the behaviour of the prey flock can turn out to be starkly different when there are multiple predators involved. We examine the response of the flock in the presence of multiple predators and find the circumstances leading to the occurrence of different escape manoeuvres. We observe the stricter penalty warranted on the flock due to certain manoeuvres, such as split-and-join, due to the asynchronous and persistent nature of the predator attacks. We also identify the issues with superfluous coordination among prey and its ramifications in terms of prey mortality. The combined effect of the predators is found to outpace the sum of individual predator prowess. The current work emphasises the distinct dynamics of a multi-predator system and puts forth pertinent queries regarding synchronisation among predators and group hunting tactics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3