Transcranial electric stimulation modulates firing rate at clinically relevant intensities

Author:

Farahani Forouzan,Khadka Niranjan,Parra Lucas C.ORCID,Bikson Marom,Vöröslakos Mihály

Abstract

AbstractNotwithstanding advances with low-intensity transcranial electrical stimulation (TES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. We used Neuropixels 2.0 probe with 384 channels in an in-vivo rat model of TES to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 µA of applied skull currents). We demonstrate that electric fields below 0.5 V/m acutely modulate firing rate in 5% of neurons recorded in the hippocampus. At these intensities, average firing rate effects increased monotonically with electric field intensity at a rate of 7 % per V/m. For the majority of excitatory neurons, firing increased for cathodal stimulation and diminished for anodal stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. Our results indicate that responses to TES at clinically relevant intensities are driven by a fraction of high-responder excitatory neurons, with polarity-specific effects. We conclude that transcranial electric stimulation is an effective neuromodulator at clinically realistic intensities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3