Developmental trajectories and differences in functional brain network properties of preterm and at-term neonates

Author:

López-Guerrero NORCID,Alcauter SORCID

Abstract

AbstractPremature infants, born before 37 weeks of gestation can have alterations in neurodevelopment and cognition, even when no anatomical lesions are evident. Resting-state functional neuroimaging of naturally sleeping babies has shown altered connectivity patterns, but there is limited evidence on the developmental trajectories of functional organization in preterm neonates. By using a large dataset (n=597) from the developing Human Connectome Project, we explored the differences in graph theory properties between at-term and preterm neonates at term-equivalent age, considering the age subgroups proposed by the World Health Organization for premature birth. Leveraging the longitudinal follow-up for some preterm participants, we characterized the developmental trajectories for preterm and at-term neonates. We found significant differences between groups in connectivity strength, clustering coefficient, characteristic path length and global efficiency. Specifically, at term-equivalent ages, higher connectivity, clustering coefficient and efficiency are identified for neonates born at later postmenstrual ages. Similarly, the characteristic path length showed the inverse pattern. These results were consistent for a variety of connectivity thresholds at both the global (whole brain) and local level (brain regions). The brain regions with the greatest differences between groups include primary sensory and motor regions and the precuneus which may relate to the risk factors for sensorimotor and behavioral deficits associated with premature birth. Our results also show non-linear developmental trajectories for premature neonates, but decreased integration and segregation even at term-equivalent age. Overall, our results confirm altered functional connectivity, integration and segregation properties of the premature brain despite showing rapid maturation after birth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3