3D-Imaging of synapses in neuronal tissues with synchrotron X-ray ptychography

Author:

Bosch CarlesORCID,Diaz AnaORCID,Holler MirkoORCID,Guizar-Sicairos ManuelORCID,Aidukas TomasORCID,Pacureanu AlexandraORCID,Müller ElisabethORCID,Peddie Christopher J.ORCID,Collinson LucyORCID,Zhang YuxinORCID,Menzel AndreasORCID,Wanner Adrian A.ORCID,Schaefer Andreas T.ORCID

Abstract

AbstractWiring diagrams of neural circuits are of central importance in delineating mechanisms of computation in the brain (Lichtman and Sanes, 2008; Litwin-Kumar and Turaga, 2019). To generate these diagrams, the individual parts of neurons - axons, dendrites and synapses - must be densely identified in 3-dimensional volumes of neuronal tissue. This is typically achieved by electron microscopy (Kornfeld and Denk, 2018), necessitating physical sectioning of the specimen either before or during the image acquisition process using ultrathin sectioning techniques or gallium or gas cluster ion beams (Denk and Horstmann, 2004; Hayworth et al., 2020; Kasthuri et al., 2015; Xu et al., 2017). Here, we demonstrate that X-ray ptychography (Pfeiffer, 2018), a coherent diffractive X-ray imaging technique, can faithfully acquire 3-dimensional images of metal-stained mouse neuronal tissue. Achieving high imaging quality requires minimization of the radiation damage to the sample, which we achieve by imaging at cryogenic temperatures and using specialised tomographic reconstruction algorithms (Odstrcil et al., 2019b). Using a newly identified tri-functional epoxy resin we demonstrate radiation resistance to X-ray doses exceeding 1011Gy. Sub-40 nm resolution makes it possible to densely resolve axon bundles, boutons, dendrites, and synapses without physical sectioning. Moreover, the tissue volumes can subsequently be imaged in 3D using high-resolution focused ion beam scanning electron microscopy (FIB-SEM) (Heymann et al., 2006; Knott et al., 2008) showing intact ultrastructure, suggesting that metal-stained neuronal tissue can be highly radiation-stable. Ongoing improvements in synchrotron, X-ray and detector physics (Yabashi and Tanaka, 2017), as well as further optimization of sample preparation and staining procedures (Hua et al., 2015; Karlupia et al., 2023; Lu et al., 2023; Mikula and Denk, 2015; Pallotto et al., 2015; Song et al., 2022), could lead to substantial improvements in acquisition speed (Du et al., 2021), whilst widening the volumes that can be imaged with X-ray techniques using laminography (Helfen et al., 2005; Helfen et al., 2013; Holler et al., 2020b; Holler et al., 2019) and nano-holotomography (Cloetens et al., 1999; Kuan et al., 2020) could allow for non-destructive X-ray imaging of synapses and neural circuits contained in volumes of increasing size.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3