Sample-efficient Antibody Design through Protein Language Model for Risk-aware Batch Bayesian Optimization

Author:

Wang Yanzheng,Wang Boyue,Shi Tianyu,Fu Jie,Zhou Yi,Zhang Zhizhuo

Abstract

AbstractAntibody design is a time-consuming and expensive process that often requires extensive experimentation to identify the best candidates. To address this challenge, we propose an efficient and risk-aware antibody design framework that leverages protein language models (PLMs) and batch Bayesian optimization (BO). Our framework utilizes the generative power of protein language models to predict candidate sequences with higher naturalness and a Bayesian optimization algorithm to iteratively explore the sequence space and identify the most promising candidates. To further improve the efficiency of the search process, we introduce a risk-aware approach that balances exploration and exploitation by incorporating uncertainty estimates into the acquisition function of the Bayesian optimization algorithm. We demonstrate the effectiveness of our approach through experiments on several benchmark datasets, showing that our framework outperforms state-of-the-art methods in terms of both efficiency and quality of the designed sequences. Our framework has the potential to accelerate the discovery of new antibodies and reduce the cost and time required for antibody design.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Rosettaantibodydesign (rabd): A general framework for computational antibody design;PLoS computational biology,2018

2. Rahmad Akbar , Philippe A Robert , Cédric R Weber , Michael Widrich , Robert Frank , Milena Pavlović , Lonneke Scheffer , Maria Chernigovskaya , Igor Snapkov , Andrei Slabodkin , et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. In MAbs, number 1, page 2031482. Taylor & Francis, 2022.

3. Reinforcement learning-based sequential batchsampling for bayesian optimal experimental design;Journal of Mechanical Design,2022

4. Sharrol Bachas , Goran Rakocevic , David Spencer , Anand V Sastry , Robel Haile , John M Sutton , George Kasun , Andrew Stachyra , Jahir M Gutierrez , Edriss Yassine , et al. Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness. bioRxiv, pages 2022–08, 2022.

5. David Belanger , Suhani Vora , Zelda Mariet , Ramya Deshpande , David Dohan , Christof Angermueller , Kevin Murphy , Olivier Chapelle , and Lucy Colwell . Biological sequences design using batched bayesian optimization. NeurIPS workshop on Bayesian Deep Learning (2019), 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive overview of recent advances in generative models for antibodies;Computational and Structural Biotechnology Journal;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3