1. Rosettaantibodydesign (rabd): A general framework for computational antibody design;PLoS computational biology,2018
2. Rahmad Akbar , Philippe A Robert , Cédric R Weber , Michael Widrich , Robert Frank , Milena Pavlović , Lonneke Scheffer , Maria Chernigovskaya , Igor Snapkov , Andrei Slabodkin , et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. In MAbs, number 1, page 2031482. Taylor & Francis, 2022.
3. Reinforcement learning-based sequential batchsampling for bayesian optimal experimental design;Journal of Mechanical Design,2022
4. Sharrol Bachas , Goran Rakocevic , David Spencer , Anand V Sastry , Robel Haile , John M Sutton , George Kasun , Andrew Stachyra , Jahir M Gutierrez , Edriss Yassine , et al. Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness. bioRxiv, pages 2022–08, 2022.
5. David Belanger , Suhani Vora , Zelda Mariet , Ramya Deshpande , David Dohan , Christof Angermueller , Kevin Murphy , Olivier Chapelle , and Lucy Colwell . Biological sequences design using batched bayesian optimization. NeurIPS workshop on Bayesian Deep Learning (2019), 2019.