Benchmarking Machine Learning Methods for Synthetic Lethality Prediction in Cancer

Author:

Feng Yimiao,Long Yahui,Wang He,Ouyang Yang,Li Quan,Wu Min,Zheng JieORCID

Abstract

ABSTRACTSynthetic lethality (SL) is a type of genetic interaction that occurs when defects in two genes cause cell death, while a defect in a single gene does not. Targeting an SL partner of a gene mutated in cancer can selectively kill tumor cells. Traditional wet-lab experiments for SL screening are resource-intensive. Hence, many computational methods have been developed for virtual screening of SL gene pairs. This study benchmarks recent machine learning methods for SL prediction, including three matrix factorization and eight deep learning models. We scrutinize model performance using various data splitting scenarios, negative sample ratios, and negative sampling methods on both classification and ranking tasks to assess the models’ generalizability and robustness. Our benchmark analyzed performance differences among the models and emphasized the importance of data and real-world scenarios. Finally, we suggest future directions to improve machine learning methods for SL discovery in terms of predictive power and interpretability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3