CRISPR/Cas9-induced double-strand breaks in huntingtin locus lead to CAG repeat contraction through the extensive DNA end resection and homology-mediated repair

Author:

Sledzinski Pawel,Nowaczyk Mateusz,Karwacka Marianna,Olejniczak MartaORCID

Abstract

ABSTRACTExpansion of the CAG/CTG repeats in functionally unrelated genes is a causative factor in many inherited neurodegenerative disorders, including Huntington’s disease (HD), spinocerebellar ataxias (SCAs) and myotonic dystrophy type 1 (DM1). Despite many years of research, the mechanism responsible for repeat instability is unknown, and recent findings indicate the key role of DNA repair in this process. The repair of DSBs induced by genome editing tools results in the shortening of long CAG repeats in yeast models. Understanding this mechanism is the first step to developing a therapeutic strategy based on controlled shortening of repeats. The aim of this study was to characterize Cas9-induced DSB repair products in the endogenousHTTlocus in human cells and to identify factors affecting the formation of specific types of sequences. The location of the cleavage site and the surrounding sequence influence the outcome of DNA repair. DSBs within CAG repeats result in shortening of the repeats in frame in ∼90% of products. The mechanism of this contraction involves MRE11-CTIP and RAD51 activity and extensive DNA end resection reaching ∼5000 bp. We demonstrated that a DSB located upstream of CAG repeats induces polymerase theta-mediated end joining, resulting in deletion of the entire CAG tract. Furthermore, using unbiased proteomic analysis, we identified novel factors that may be involved in CAG sequence repair.Graphical abstractDNA double-strand break repair in the CAG repeat locus engages numerous factors from various repair pathways and depends mainly on DNA end resection, leading to tract shortening.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3