Human extracellular sulfatases use a dual mechanism for regulation of growth factor interactions with heparan sulfate proteoglycans

Author:

Timm Bryce M.,Follmar Julianna L.,Porell Ryan N.,Glass Kimberly,Thacker Bryan E.,Glass Charles A.,Godula KamilORCID

Abstract

AbstractMembrane-associated heparan sulfate (HS) proteoglycans (PGs) contribute to the regulation of extracellular cellular signaling cues, such as growth factors (GFs) and chemokines, essential for normal organismal functions and implicated in various pathophysiologies. PGs accomplish this by presenting high affinity binding sites for GFs and their receptors through highly sulfated regions of their HS polysaccharide chains. The composition of HS, and thus GF-binding specificity, are determined during biosynthetic assembly prior to installation at the cell surface. Two extracellular 6-O-endosulfatase enzymes (Sulf-1 and Sulf-2) can uniquely further edit mature HS and alter its interactions with GFs by removing specific sulfation motifs from their recognition sequence on HS. Despite being implicated as signaling regulators during development and in disease, the Sulfs have resisted structural characterization, and their substrate specificity and effects on GF interactions with HS are still poorly defined. Using a panel of PG-mimetics comprising compositionally-defined bioengineered recombinant HS (rHS) substrates in combination with GF binding and enzyme activity assays, we have discovered that Sulfs control GF-HS interactions through a combination of catalytic processing and competitive blocking of high affinity GF-binding sites, providing a new conceptual framework for understanding the functional impact of these enzymes in biological context. Although the contributions from each mechanism are both Sulf- and GF-dependent, the PG-mimetic platform allows for rapid analysis of these complex relationships.Significance StatementCells rely on extracellular signals such as growth factors (GFs) to mediate critical biological functions. Membrane-associated proteins bearing negatively charged heparan sulfate (HS) sugar chains engage with GFs and present them to their receptors, which regulates their activity. Two extracellular sulfatase (Sulf) enzymes can edit HS and alter GF interactions and activity, although the precise mechanisms remain unclear. By using chemically defined HS-mimetics as probes, we have discovered that Sulfs can modulate HS by means of catalytic alterations and competitive blocking of GF-binding sites. These unique dual activities distinguish Sulfs from other enzymes and provide clues to their roles in development and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3