Moderate confirmation bias enhances collective decision-making

Author:

Bergerot ClémenceORCID,Barfuss WolframORCID,Romanczuk PawelORCID

Abstract

Humans tend to give more weight to information confirming their beliefs than to information that disconfirms them. Nevertheless, this apparent irrationality has been shown to improve individual decision-making under uncertainty. However, little is known about this bias’ impact on collective decision-making. Here, we investigate the conditions under which confirmation bias is beneficial or detrimental to collective decision-making. To do so, we develop a Collective Asymmetric Reinforcement Learning (CARL) model in which artificial agents observe others’ actions and rewards, and update this information asymmetrically. We use agent-based simulations to study how confirmation bias affects collective performance on a two-armed bandit task, and how resource scarcity, group size and bias strength modulate this effect. We find that a confirmation bias benefits group learning across a wide range of resource-scarcity conditions. Moreover, we discover that, past a critical bias strength, resource abundance favors the emergence of two different performance regimes, one of which is suboptimal. In addition, we find that this regime bifurcation comes with polarization in small groups of agents. Overall, our results suggest the existence of an optimal, moderate level of confirmation bias for collective decision-making.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Modeling confirmation bias and polarization;Scientific reports,2017

2. Confirmation bias and vaccine-related beliefs in the time of covid-19;Journal of Public Health,2023

3. Does social media increase racist behavior? an examination of confirmation bias theory;Technology in Society,2018

4. Confirmation bias and the persistence of misinformation on climate change;Communication Research,2022

5. R. S. Sutton and A. G. Barto , Reinforcement learning: An introduction (MIT press, 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3