Author:
Pellicer Alexandre Olive,Singh Yadav Amit Kumar,Bhagtani Kratika,Xiang Ziyue,Pizlo Zygmunt,Gradus-Pizlo Irmina,Delp Edward J.
Abstract
AbstractAn echocardiogram is a video sequence of a human heart captured using ultrasound imaging. It shows heart structure and motion and helps in diagnosis of cardiovascular diseases. Deep learning methods, which require large amounts of training data have shown success in using echocardiograms to detect cardiovascular disorders such as valvular heart disease. Large datasets of echocardiograms that can be used for machine learning training are scarce. One way to address this problem is to use modern machine learning generative methods to generate synthetic echocardiograms that can be used for machine learning training. In this paper, we propose a video diffusion method for the generation of echocardiograms. Our method uses a 3D selfattention mechanism and a super-resolution model. We demonstrate that our proposed method generates echocardiograms with higher resolution and with lesser artifacts, compared to existing echocardiogram generation methods.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献