Vaxign-DL: A Deep Learning-based Method for Vaccine Design and its Evaluation

Author:

Zhang Yuhan,Huffman Anthony,Johnson Justin,He YongqunORCID

Abstract

AbstractReverse vaccinology (RV) provides a systematic approach to identifying potential vaccine candidates based on protein sequences. The integration of machine learning (ML) into this process has greatly enhanced our ability to predict viable vaccine candidates from these sequences. We have previously developed a Vaxign-ML program based on the eXtreme Gradient Boosting (XGBoost). In this study, we further extend our work to develop a Vaxign-DL program based on deep learning techniques. Deep neural networks assemble non-linear models and learn multilevel abstraction of data using hierarchically structured layers, offering a data-driven approach in computational design models. Vaxign-DL uses a three-layer fully connected neural network model. Using the same bacterial vaccine candidate training data as used in Vaxign-ML development, Vaxign-DL was able to achieve an Area Under the Receiver Operating Characteristic of 0.94, specificity of 0.99, sensitivity of 0.74, and accuracy of 0.96. Using the Leave-One-Pathogen-Out Validation (LOPOV) method, Vaxign-DL was able to predict vaccine candidates for 10 pathogens. Our benchmark study shows that Vaxign-DL achieved comparable results with Vaxign-ML in most cases, and our method outperforms Vaxi-DL in the accurate prediction of bacterial protective antigens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3