Single-nucleus transcriptomics of epicardial adipose tissue from females reveals exercise control of innate and adaptive immune cells

Author:

Ahmad IrshadORCID,Gupta ShreyanORCID,Faulkner Patricia,Mullens DestinyORCID,Thomas Micah,Sytha Sharanee P.ORCID,Ivanov IvanORCID,Cai James J.ORCID,Heaps Cristine L.ORCID,Newell-Fugate Annie E.ORCID

Abstract

AbstractCoronary artery disease (CAD) is a leading cause of death in women. Although exercise mitigates CAD, the mechanisms by which exercise impacts epicardial adipose tissue (EAT) are unknown. We hypothesized that exercise promotes an anti-inflammatory microenvironment in EAT from female pigs. Yucatan pigs (n=7) were assigned to sedentary (Sed) or exercise (Ex) treatments and coronary arteries were occluded (O) with an ameroid to mimic CAD or remained non-occluded (N). EAT was collected for bulk and single nucleus transcriptomic sequencing (snRNA-seq). Exercise upregulated G-protein coupled receptor, S100 family, and FAK pathways and downregulated the coagulation pathway. Exercise increased the interaction between immune, endothelial, and mesenchymal cells in the insulin-like growth factor pathway and between endothelial and other cell types in the platelet endothelial cell adhesion molecule 1 pathway. Sub- clustering revealed nine cell types in EAT with fibroblast and macrophage populations predominant in O-Ex EAT and T cell population predominant in N-Ex EAT. Coronary occlusion impacted the largest number of genes in T and endothelial cells. Genes related to fatty acid metabolism were the most highly upregulated in non-immune cells from O-Ex EAT. Sub-clustering of endothelial cells revealed that N-Ex EAT separated from other treatments. In conclusion, aerobic exercise increased interaction amongst immune and mesenchymal and endothelial cells in female EAT. Exercise was minimally effective at reversing alterations in gene expression in endothelial and mesenchymal cells in EAT surrounding occluded arteries. These findings lay the foundation for future work focused on the impact of exercise on cell types in EAT.Significance StatementCoronary artery disease (CAD) is a leading cause of death in women. However, the role of epicardial adipose tissue (EAT) in the development of CAD in females and how exercise, which is recommended to slow CAD progression, impacts EAT are unknown. The effect of aerobic exercise on gene expression in EAT was investigated with RNA-sequencing, revealing significant alterations in fatty acid processing and immunoregulatory processes. This study provides valuable insights into the molecular and cellular changes induced in EAT by exercise in the context of chronic ischemic heart disease in females. These findings bolster current understanding of the impact of aerobic exercise on cardiac health in females and provide a foundation for future research in the field of exercise science.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3