Abstract
AbstractBackgroundWalking slows with aging often leading to mobility disability. Mitochondrial energetics has been found to influence gait speed over short distances. Additionally, walking is a complex activity but few clinical factors that may influence walk time have been studied.MethodsWe examined 879 participants ≥70 years and measured the time to walk 400m. We tested the hypothesis that decreased mitochondrial energetics by respirometry in muscle biopsies and magnetic resonance spectroscopy in the thigh, is associated with longer time to walk 400m. We also used cardiopulmonary exercise testing to assess the energetic costs of walking: maximum oxygen consumption (VO2peak) and energy cost-capacity (the ratio of VO2, at a slow speed to VO2peak). In addition, we tested the hypothesis that selected clinical factors would also be associated with 400m walk time.ResultsLower Max OXPHOS was associated with longer walk time and the association was explained by the energetics costs of walking, leg power and weight. Additionally, a multivariate model revealed that longer walk time was also significantly associated with lower VO2peak, greater cost-capacity ratio, weaker leg power, heavier weight, hip and knee stiffness, peripheral neuropathy, greater perceived exertion while walking slowly, greater physical fatigability, less moderate-to-vigorous exercise, less sedentary time and anemia. Significant associations between age, sex, muscle mass, and peripheral artery disease with 400m walk time were explained by other clinical and physiologic factors.ConclusionsLower mitochondrial energetics is associated with needing more time to walk 400m. This supports the value of developing interventions to improve mitochondrial energetics. Additionally, doing more moderate-to-vigorous exercise, increasing leg power, reducing weight, treating hip and knee stiffness, and screening for and treating anemia may reduce the time required to walk 400m and reduce the risk of mobility disability.
Publisher
Cold Spring Harbor Laboratory