Assessing Tumor Microenvironment Characteristics and Stratifying EPR with a Nanobubble Companion Nanoparticle via Contrast-Enhanced Ultrasound Imaging

Author:

Cooley Michaela B.ORCID,Wegierak DanaORCID,Perera ReshaniORCID,Abenojar Eric C.ORCID,Nittayacharn Pinunta A.ORCID,Berg Felipe M.ORCID,Kim YoujoungORCID,Kolios Michael C.ORCID,Exner Agata A.ORCID

Abstract

AbstractThe tumor microenvironment is characterized by dysfunctional endothelial cells, resulting in heightened vascular permeability. Many nanoparticle-based drug delivery systems attempt to use this enhanced permeability combined with impaired lymphatic drainage (a concept known as the ‘enhanced permeability and retention effect’ or EPR effect) as the primary strategy for drug delivery, but this has not proven to be as clinically effective as anticipated. The specific mechanisms behind the inconsistent clinical outcomes of nanotherapeutics have not been clearly articulated, and the field has been hampered by a lack of accessible tools to study EPR-associated phenomena in clinically relevant scenarios. While medical imaging has tremendous potential to contribute to this area, it has not been broadly explored. This work examines, for the first time, the use of multiparametric dynamic contrast-enhanced ultrasound (CEUS) with a novel nanoscale contrast agent to examine tumor microenvironment characteristics noninvasively and in real-time. We demonstrate that CEUS imaging can: (1) evaluate tumor microenvironment features and (2) be used to help predict the distribution of doxorubicin-loaded liposomes in the tumor parenchyma. CEUS using nanobubbles (NBs) was carried out in two tumor types of high (LS174T) and low (U87) vascular permeability, and time-intensity curve (TIC) parameters were evaluated in both models prior to injection of doxorubicin liposomes. Consistently, LS174T tumors showed significantly different TIC parameters, including area under the rising curve (2.7x), time to peak intensity (1.9x) and decorrelation time (DT, 1.9x) compared to U87 tumors. Importantly, the DT parameter successfully predicted tumoral nanoparticle distribution (r = 0.86 ± 0.13). Ultimately, substantial differences in NB-CEUS generated parameters between LS174T and U87 tumors suggest that this method may be useful in determining tumor vascular permeability and could be used as a biomarker for identifying tumor characteristics and predicting sensitivity to nanoparticle-based therapies. These findings could ultimately be applied to predicting treatment efficacy and to evaluating EPR in other diseases with pathologically permeable vasculature.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. WISQARS 10 Leading Causes of Death, United States. Centers for Disease Control and Prevention https://wisqars.cdc.gov/data/lcd/home (2020).

2. Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC). NIH RePORT (2022).

3. Anselmo, A. C. & Mitragotri, S . Nanoparticles in the clinic: An update. Bioeng Transl Med 4, (2019).

4. Cancer nanomedicine: progress, challenges and opportunities

5. Smart cancer nanomedicine;Nat Nanotechnol,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3