Quick and effective approximation ofin silicosaturation mutagenesis experiments with first-order Taylor expansion

Author:

Sasse Alexander,Chikina Maria,Mostafavi Sara

Abstract

AbstractTo understand the decision process of genomic sequence-to-function models, various explainable AI algorithms have been proposed. These methods determine the importance of each nucleotide in a given input sequence to the model’s predictions, and enable discovery ofcisregulatory motif grammar for gene regulation. The most commonly applied method isin silicosaturation mutagenesis (ISM) because its per-nucleotide importance scores can be intuitively understood as the computational counterpart toin vivosaturation mutagenesis experiments. While ISM is highly interpretable, it is computationally challenging to perform, because it requires computing three forward passes for every nucleotide in the given input sequence; these computations add up when analyzing a large number of sequences, and become prohibitive as the length of the input sequences and size of the model grows. Here, we show how to use the first-order Taylor approximation for ISM, which reduces its computation cost to a single forward pass for an input sequence, placing its scalability on equal footing with gradient-based approximation methods such as “gradient-times-input”. We show that the Taylor ISM (TISM) approximation is robust across different model ablations, random initializations, training parameters, and data set sizes. We use our theoretical derivation to connect ISM with the gradient values and show how this approximation is related to a recently suggested correction of the model’s gradients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3