Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation

Author:

Cizauskas Hannah E,Burnham Hope V,Panni Azaria,Pena Alexandra,Alvarez-Arce Alejandro,Davis M Therese,Araujo Kelly N,Delligatti Christine,Edassery Seby,Kirk Jonathan A,Arora Rishi,Barefield David Y

Abstract

(ii) ABSTRACTAimsAtrial fibrillation (AFib) is the most common cardiac rhythm disturbance. Treatment of AFib involves restoration of the atrial electrical rhythm. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs that involves decreased blood flow velocity and reduced atrial contractility. This suggests that defects in contractility occur in AFib and are revealed upon restoration of rhythm. The aim of this project is to define the contractile remodeling that occurs in AFibMethods and ResultsTo assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared to sinus rhythm atria. Atrial cardiomyocytes showed reduced force of contraction in skinned single cardiomyocyte calcium-force studies. There were no significant differences in myosin heavy chain isoform expression. Resting tension is decreased in the AFib samples correlating with reduced full-length titin in the sarcomere. We measured degradation of other myofilament proteins including cMyBP-C, actinin, and cTnI, showing significant degradation in the AFib samples compared to sinus rhythm atria. Many of the protein degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. Skinned cardiomyocytes from AFib atria showed decreased troponin I phosphorylation, consistent with the increased calcium sensitivity that was found within these cardiomyocytes.ConclusionsWith these results it can be concluded that AFib causes alterations in contraction that can be explained by both molecular changes occurring in myofilament proteins and overall myofilament protein degradation. These results provide an understanding of the contractile remodeling that occurs in AFib and provides insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3