Thermo-sensitive condensation of SUF4 tunes flowering time inArabidopsis thaliana

Author:

Meyer Heather M.ORCID,Hotta Takashi,Malkovskiy Andrey,Zheng Yixian,Ehrhardt David W.

Abstract

ABSTRACTIntrinsically disordered proteins (IDP) lack stable tertiary structures, which allows them to change conformation and function under different physicochemical conditions. This may be highly advantageous for plants, which often use changes in their environment to trigger developmental events. For instance, some plants use exposure to winter temperatures as a cue to initiate flowering the following spring. Many of the genes involved in temperature-dependent flowering have been extensively studied inArabidopsis, yet how plants perceive temperature changes is poorly understood. Here, we explore the role of temperature-sensitive phase separation of the IDP and flowering-time regulator, SUPPRESSOR OF FRIGIDA 4 (SUF4), in modulating flowering time. SUF4 has a well-defined role in regulating temperature-dependent flowering time by activating the master floral suppressorFLOWERING LOCUS C (FLC). We show that in plant nuclei, SUF4 is a temperature-sensitive protein that assembles into biomolecular condensates in warm temperatures (20°C). When temperatures cool (4°C), SUF4 nuclear condensates disassemble, causing SUF4 to disperse within the nucleoplasm. Additionally, we demonstrate that the number of SUF4 condensates quantitatively correlates with flowering time. Progressive alterations to the amino acid composition of SUF4’s disordered region cause likewise progressive changes in temperature-dependent condensation bothin vitroandin vivo,FLCtranscription, and the onset of flowering. We also observe that SUF4 condensates coincide with the accumulation of other key flowering-time proteins (FRIGIDA and ELF7). These findings indicate that condensation of SUF4 likely plays a pivotal role in promoting flowering, possibly by concentrating and stabilizing the regulatory factors needed for the transcriptional activation ofFLCthrough temperature-dependent phase separation. This research suggests that in plants, IDPs can sense environmental cues and regulate critical developmental processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3