Author:
Lopes-Rodrigues Vanessa,Nyantakyi Samuel A.,Lun Xueqing,Zhang Jianbo,Ramanujuan Ajeena,Salim Shuhailah,Saleeb Michael,Senger Donna L.,Ibáñez Carlos F.
Abstract
AbstractReceptor transmembrane domains (TMDs) are crucially involved in relaying ligand information from extracellular to intracellular spaces and represent attractive targets for small molecule manipulation of receptor function. Screening a library of over 8,000 drug-like compounds with an assay based on the TMD of death receptor p75NTR, we identified a novel small molecule capable of inhibiting p75NTR-mediated migration of human melanoma cells. Employing medicinal chemistry, a more potent derivative termed Np75-4A22 was identified that blocks nerve growth factor (NGF)-mediated melanoma invasion at submicromolar concentrations. Mechanistically, Np75-4A22 was found, at least in part, to function by antagonizing NGF-mediated recruitment of the actin-bundling protein fascin to p75NTRand its association with the actin cytoskeleton. Importantly, preclinical assessment of Np75-4A22 showed high oral bioavailability, low toxicity, and significant inhibition of melanoma lung metastases in a highly metastatic mouse model. These results support further development of this approach as an alternative or complementary strategy for patients that do not respond to conventional chemotherapy or immune checkpoint inhibitors.
Publisher
Cold Spring Harbor Laboratory