Multiple focal pulvinar projection fields in the macaque cortex

Author:

Froesel MathildaORCID,Clavagnier SimonORCID,Goudard QuentinORCID,Zhu Qi,Vanduffel WimORCID,Ben Hamed SuliannORCID

Abstract

AbstractThe pulvinar, the largest nucleus of the thalamus, is functionally heterogeneous and involved in multiple cognitive functions. It has been proposed to act as a functional hub of cortical processes due to its extensive reciprocal connectivity with the cortex. However, its role in cognition is not fully understood yet. Here, we posit that an improved understanding of its functional connectivity with the cortex is needed to better capture the cognitive functions of this nucleus. To address this question, we characterize the pulvino-cortical functional connectivity along the ventro-dorsal, antero-posterior and medio-lateral axes, using awake resting state data from ten adult macaques. We first report two global cortical functional connectivity gradients along the antero-posterior and ventro-dorsal pulvinar gradients, that match remarkably well the structural connectivity gradients described by anatomical approaches. In addition to these global gradients, multiple local cortical pulvinar projection fields can be identified at the sulci level such as in the lateral sulcus (LS), the intraparietal sulcus (IPS), the principal sulci (PS) and the anterior cingulate cortex (ACC). For most sulci, we show that functional pulvino-cortical projection fields follow the major anatomical axis of these different sulci (e.g. the ventro-dorsal axis for the LS and the antero-posterior axis for the IPS). Other sulci, such as the superior temporal sulcus, the posterior cingulate cortex or the central sulcus, display multiple projection fields from the pulvinar. Although substantial inter-individual differences exist, the general functional connectivity patterns are remarkably consistent across hemispheres and individuals. Overall, we propose that these multiple pulvinar projection fields correspond to a fundamental principle of pulvino-cortical connectivity and that a better understanding of this connectional organization will shed light on the function of pulvino-cortical interactions and the role of the pulvinar in cognition at large.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3