Internally-consistent and fully-unbiased multimodal MRI brain template construction from UK Biobank: Oxford-MM

Author:

Arthofer ChristophORCID,Smith Stephen M.,Douaud Gwenaëlle,Bartsch Andreas,Alfaro-Almagro Fidel,Andersson Jesper,Lange Frederik J.

Abstract

AbstractAnatomical MRI templates of the brain are essential to group-level analyses and image processing pipelines, as they provide a reference space for spatial normalisation. While it has become common for studies to acquire multimodal MRI data, many templates are still limited to one type of modality, usually either scalar or tensor-based. Aligning each modality in isolation does not take full advantage of the available complementary information, such as strong contrast between tissue types in structural images, or axonal organisation in the white matter in diffusion tensor images. Most existing strategies for multimodal template construction either do not use all modalities of interest to inform the template construction process, or do not use them in a unified framework.Here, we present multimodal, cross-sectional templates constructed from UK Biobank data: the OMM-1 template, and age-dependent templates for each year of life between 45 to 81. All templates are fully unbiased to represent the average shape of the populations they were constructed from, and internally consistent through jointly informing the template construction process with T1, T2-FLAIR and DTI data. The OMM-1 template was constructed with a multi-resolution, iterative approach using 240 individuals in the 50-55 year age range. The age-dependent templates were estimated using a Gaussian Process, which describes the change in average brain shape with age in 37,330 individuals.All templates show excellent contrast and alignment within and between modalities. The global brain shape and size is not preconditioned on existing templates, although maximal possible compatibility with MNI-152 space was maintained through rigid alignment. We showed benefits in registration accuracy across two datasets (UK Biobank and HCP), when using the OMM-1 as the template compared with FSL’s MNI-152 template, and found that the use of age-dependent templates further improved accuracy to a small but detectable extent. All templates are publicly available and can be used as a new reference space for uni- or multimodal spatial alignment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3