Motif-VI Loop Acts as a Nucleotide Valve in the West Nile Virus NS3 Helicase

Author:

Roy PritiORCID,Walter Zachary,Berish Lauren,Ramage HollyORCID,McCullagh MartinORCID

Abstract

AbstractThe flavivirus NS3 helicase (NS3h), a highly conserved protein, plays a pivotal role in virus replication and thus represents a potential drug target for flavivirus pathogenesis. NS3h utilizes nucleotide triphosphate, such as ATP, for hydrolysis energy (ATPase) to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. The intermediate states along the ATP binding and hydrolysis cycle, as well as the conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. We use extensive molecular dynamics simulations of apo, ATP, ADP+Pi, and ADP bound to WNV NS3h+ssRNA to model the conformational ensembles along this cycle. Energetic and structural clustering analyses on these trajectories depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). These findings were experimentally corroborated using viral replicons encoding three mutations at the D471 position. Replication assays using these mutants demonstrated a substantial reduction in viral replication compared to the wild-type. Molecular simulations of the D471 mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open ‘valve’ conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a ‘valve’ for the ATP-pocket, presenting a promising target for antiviral development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3