Abstract
Introductory ParagraphTo understand genetic mechanisms driving disease, it is essential but difficult to map how risk alleles affect the composition of cells present in the body. Single-cell profiling quantifies granular information about tissues, but variant-associated cell states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce GeNA (Genotype-Neighborhood Associations), a statistical tool to identify cell state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of scRNA-seq peripheral blood profiling from 969 individuals,1GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (p=1.96×10-11) associates with increased abundance of NK cells expressing TNF-α response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-TNF treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk.
Publisher
Cold Spring Harbor Laboratory