DNA Origami – Lipid Membrane Interactions Defined at Single-Molecular Resolution

Author:

Georgiou Elena,Cabello-Garcia JavierORCID,Xing Yongzheng,Howorka StefanORCID

Abstract

ABSTRACTRigid DNA nanostructures that bind to floppy bilayer membranes are of fundamental interest as they replicate biological cytoskeletons for synthetic biology, biosensing, and biological research. Here, we establish principles underpinning the controlled interaction of DNA structures and lipid bilayers. As membrane anchors mediate interaction, more than 20 versions of a core DNA nanostructure are built each carrying up to five individual cholesterol anchors of different steric accessibility within the 3D geometry. The structures’ binding to membrane vesicles of tunable curvature is determined with ensemble methods and by single-molecule localization microscopy. This screen yields quantitative and unexpected insight on which steric anchor points cause efficient binding. Strikingly, defined nanostructures with a single molecular anchor discriminate effectively between vesicles of different nanoscale curvatures which may be exploited to discern diagnostically relevant membrane vesicles based on size. Furthermore, we reveal anchor-mediated bilayer interaction to be co-controlled by non-lipidated DNA regions and localized membrane curvatures stemming from heterogenous lipid composition, which modifies existing biophysical models. Our study extends DNA nanotechnology to control interactions with bilayer membranes and thereby facilitate the design of nanodevices for vesicle-based diagnostics, biosensing, and protocells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3