An experimental target-based platform in yeast for screeningPlasmodium vivaxdeoxyhypusine synthase inhibitors

Author:

Silva Suélen Fernandes,Klippel Angélica Hollunder,Sigurdardóttir Sunniva,Mahdizadeh Sayyed Jalil,Tiukova Ievgeniia,Bourgard Catarina,Monteiro do Amaral Prado Heloísa,de Araujo Renan Vinicius,Bilsland Elizabeth,King Ross D.,Massirer Katlin BrauerORCID,Eriksson Leif A.,Bengtson Mário Henrique,Sunnerhagen PerORCID,Zanelli Cleslei Fernando

Abstract

ABSTRACTThe enzyme deoxyhypusine synthase (DHS) catalyzes the first step in the post-translational modification of the eukaryotic translation factor 5A (eIF5A). This is the only protein known to contain the amino acid hypusine, which results from this modification. Both eIF5A and DHS are essential for cell viability in eukaryotes, and inhibiting DHS can be a promising strategy for the development of new therapeutic alternatives. The human and parasitic orthologous proteins are different enough to render selective targeting against infectious diseases; however, no DHS inhibitor selective for the parasite ortholog has previously been reported. Here, we established a yeast surrogate genetics platform to identify inhibitors of DHS fromPlasmodium vivax,one of the major causative agents of malaria. We constructed genetically modifiedSaccharomyces cerevisiaestrains expressing DHS genes fromHomo sapiens(HsDHS) orP. vivax(PvDHS) in place of the endogenous DHS gene fromS. cerevisiae. This new strain background was ∼60-fold more sensitive to an inhibitor of human DHS than the one previously used. Initially, a virtual screen using datasets from the ChEMBL-NTD database was performed. Candidate ligands were tested in growth assays using the newly generated yeast strains expressing heterologous DHS genes. Among these, two showed promise by preferentially reducing the growth of the PvDHS-expressing strain. Further, in a robotized assay, we screened 400 compounds from the Pathogen Box library using the sameS. cerevisiaestrains, and one compound preferentially reduced the growth of the PvDHS-expressing yeast strain. Western blot revealed that these compounds significantly reduced eIF5A hypusination in yeast. Our study demonstrates that this yeast-based platform is suitable for identifying and verifying candidate small molecule DHS inhibitors, selective for the parasite over the human ortholog.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3