Fast and efficient root phenotyping via pose estimation

Author:

Berrigan Elizabeth M.ORCID,Wang LinORCID,Carrillo Hannah,Echegoyen Kimberly,Kappes Mikayla,Torres Jorge,Ai-Perreira Angel,McCoy Erica,Shane Emily,Copeland Charles D.,Ragel Lauren,Georgousakis Charidimos,Lee Sanghwa,Reynolds Dawn,Talgo Avery,Gonzalez Juan,Zhang Ling,Rajurkar Ashish B.ORCID,Ruiz Michel,Daniels Erin,Maree LiezlORCID,Pariyar ShreeORCID,Busch WolfgangORCID,Pereira Talmo D.ORCID

Abstract

AbstractImage segmentation is commonly used to estimate the location and shape of plants and their external structures. Segmentation masks are then used to localize landmarks of interest and compute other geometric features that correspond to the plant’s phenotype. Despite its prevalence, segmentation-based approaches are laborious (requiring extensive annotation to train), and error-prone (derived geometric features are sensitive to instance mask integrity). Here we present a segmentation-free approach which leverages deep learning-based landmark detection and grouping, also known as pose estimation. We use a tool originally developed for animal motion capture called SLEAP (Social LEAP Estimates Animal Poses) to automate the detection of distinct morphological landmarks on plant roots. Using a gel cylinder imaging system across multiple species, we show that our approach can reliably and efficiently recover root system topology at high accuracy, few annotated samples, and faster speed than segmentation-based approaches. In order to make use of this landmark-based representation for root phenotyping, we developed a Python library (sleap-roots) for trait extraction directly comparable to existing segmentation-based analysis software. We show that landmark-derived root traits are highly accurate and can be used for common downstream tasks including genotype classification and unsupervised trait mapping. Altogether, this work establishes the validity and advantages of pose estimation-based plant phenotyping. To facilitate adoption of this easy-to-use tool and to encourage further development, we makesleap-roots, all training data, models, and trait extraction code available at:https://github.com/talmolab/sleap-rootsandhttps://osf.io/k7j9g/.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3