Structural basis for VLDLR recognition by eastern equine encephalitis virus

Author:

Yang PanORCID,Li WanyuORCID,Fan XiaoyiORCID,Pan JunhuaORCID,Mann Colin J.ORCID,Varnum HaleyORCID,Clark Lars E.,Clark Sarah A.ORCID,Coscia AdrianORCID,Smith Katherine NabelORCID,Brusic Vesna,Abraham JonathanORCID

Abstract

SummaryAlphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV)1. The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3