Abstract
AbstractThe COVID-19 disease is an ongoing global health concern. Although vaccination provides some protection, people are still susceptible to re-infection. Ostensibly, certain populations or clinical groups may be more vulnerable. Factors causing these differences are unclear and whilst socioeconomic and cultural differences are likely to be important, human genetic factors could influence susceptibility. Experimental studies indicate SARS-CoV-2 uses innate immune suppression as a strategy to speed-up entry and replication into the host cell. Therefore, it is necessary to understand the impact of variants in immunity-associated human proteins on susceptibility to COVID-19.In this work, we analysed missense coding variants in several SARS-CoV-2 proteins and its human protein interactors that could enhance binding affinity to SARS-CoV-2. We curated a dataset of 19 SARS-CoV-2: human protein 3D-complexes, from the experimentally determined structures in the Protein Data Bank and models built using AlphaFold2-multimer, and analysed impact of missense variants occurring in the protein-protein interface region. We analysed 468 missense variants from human proteins and 212 variants from SARS-CoV-2 proteins and computationally predicted their impacts on binding affinities to SARS-CoV-2 proteins, using 3D-complexes.We predicted a total of 26 affinity-enhancing variants from 14 human proteins implicated in increased binding affinity to SARS-CoV-2. These include key-immunity associated genes (TOMM70, ISG15, IFIH1, IFIT2, RPS3, PALS1, NUP98, RAE1, AXL, ARF6, TRIMM, TRIM25) as well as important spike receptors (KREMEN1, AXL and ACE2). We report both common (e.g., Y13N in IFIH1) and rare variants in these proteins and discuss their likely structural and functional impact, using information on known and predicted functional sites. Potential mechanisms associated with immune suppression implicated by these variants are discussed.Occurrence of certain predicted affinity-enhancing variants should be monitored as they could lead to increased susceptibility and reduced immune response to SARS-CoV-2 infection in individuals/populations carrying them. Our analyses aid in understanding the potential impact of genetic variation in immunity-associated proteins on COVID-19 susceptibility and help guide drug-repurposing strategies.
Publisher
Cold Spring Harbor Laboratory
Reference118 articles.
1. Organization, W.H ., COVID-19 weekly epidemiological update, edition 150, 6 July 2023. 2023.
2. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers
3. Agyemang, C. , et al., Ethnic minority status as social determinant for COVID-19 infection, hospitalisation, severity, ICU admission and deaths in the early phase of the pandemic: a meta-analysis. BMJ Glob Health, 2021. 6(11).
4. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021;Eurosurveillance,2021
5. Analysis of Postvaccination Breakthrough COVID-19 Infections Among Adults With HIV in the United States;JAMA Netw Open,2022