Detecting Alzheimer Disease in EEG Data with Machine Learning and the Graph Discrete Fourier Transform

Author:

Mootoo Xavier S.,Fours Alice,Dinesh Chinthaka,Ashkani Mohammad,Kiss Adam,Faltyn Mateusz

Abstract

AbstractAlzheimer Disease (AD) poses a significant and growing public health challenge worldwide. Early and accurate diagnosis is crucial for effective intervention and care. In recent years, there has been a surge of interest in leveraging Electroen-cephalography (EEG) to improve the detection of AD. This paper focuses on the application of Graph Signal Processing (GSP) techniques using the Graph Discrete Fourier Transform (GDFT) to analyze EEG recordings for the detection of AD, by employing several machine learning (ML) and deep learning (DL) models. We evaluate our models on publicly available EEG data containing 88 patients categorized into three groups: AD, Frontotemporal Dementia (FTD), and Healthy Controls (HC). Binary classification of dementia versus HC reached a top accuracy of 85% (SVM), while multiclass classification of AD, FTD, and HC attained a top accuracy of 44% (Naive Bayes). We provide novel GSP methodology for detecting AD, and form a framework for further experimentation to investigate GSP in the context of other neurodegenerative diseases across multiple data modalities, such as neuroimaging data in Major Depressive Disorder, Epilepsy, and Parkinson disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3