CGCom: a framework for inferring Cell-cell Communication based on Graph Neural Network

Author:

Wang Honglin,Zhang Chenyu,Hong Seung-Hyun,Maye Peter,Rowe David,Shin Dong-Guk

Abstract

AbstractCell-cell communication is crucial in maintaining cellular homeostasis, cell survival and various regulatory relationships among interacting cells. Thanks to recent advances of spatial transcriptomics technologies, we can now explore if and how cells’ proximal information available from spatial transcriptomics datasets can be used to infer cell-cell communication. Here we present a cell-cell communication inference framework, called CGCom, which uses a graph neural network (GNN) to learn communication patterns among interacting cells by combining single-cell spatial transcriptomic datasets with publicly available ligand-receptor information and the molecular regulatory information down-stream of the ligand-receptor signaling. To evaluate the performance of CGCom, we applied it to mouse embryo seqFISH datasets. Our results demonstrate that CGCom can not only accurately infer cell communication between individual cell pairs but also generalize its learning to predict communication between different cell types. We compared the performance of CGCom with two existing methods, CellChat and CellPhoneDB, and our comparative study revealed both common and unique communication patterns from the three approaches.Commonly found communication patterns include three sets of ligand-receptor communication relationships, one between surface ectoderm cells and spinal cord cells, one between gut tube cells and endothelium, and one between neural crest and endothelium, all of which have already been reported in the literature thus offering credibility of all three methods. However, we hypothesize that CGCom is superior in reducing false positives thanks to its use of cell proximal information and its learning between specific cell pairs rather than between cell types. CGCom is a GNN-based solution that can take advantage of spatially resolved single-cell transcriptomic data in predicting cell-cell communication with a higher accuracy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3