Abstract
ABSTRACTWhen viewing the brain as a sophisticated, nonlinear dynamic system, employing complexity measures offers a valuable way to measure the intricate and dynamic aspects of spontaneous psychotic brain activity. These measures can help us identify irregularities and patterns in complex systems. In our study, we utilized fuzzy recurrence plots and sample entropy to evaluate the dynamic characteristics of psychiatric disorders. This assessment focused on understanding the temporal and spatial neural activity patterns, and more specifically, we applied complexity measures to investigate the functional connectivity within the psychotic brain. This involves understanding how different brain regions synchronize their activity, and complexity measures can reveal the patterns of these connections. It provides a means to understand how different brain regions interact and communicate under resting-state abnormal conditions. This study offers evidence demonstrating that fuzzy recurrence plots can serve as descriptors for functional connectivity and discusses their relevance to sample entropy in the context of the psychotic brain. In summary, complexity measures offer valuable insights that enrich our comprehension of atypical brain activity and the complexities present in the psychotic brain1.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献