Mechanical loading rescues mechanoresponsiveness in a human osteoarthritis explant model despite Wnt activation

Author:

Castro-Viñuelas RORCID,Viudes-Sarrión NORCID,Rojo-García AVORCID,Monteagudo SORCID,Lories RJORCID,Jonkers IORCID

Abstract

AbstractObjectivesOptimizing rehabilitation strategies for osteoarthritis necessitates a comprehensive understanding of chondrocytes’ mechanoresponse in both health and disease, especially in the context of the interplay between loading and key pathways involved in osteoarthritis development, like canonical Wnt signaling. This study aims to elucidate the role of Wnt signaling in the mechanoresponsiveness of healthy and osteoarthritic human cartilage.MethodsWe used an ex-vivo model involving short-term physiological mechanical loading of human cartilage explants. First, the loading protocol for subsequent experiments was determined. Next, loading was applied to non-OA explants with or without Wnt activation with CHIR99021. Molecular read-outs of anabolic, pericellular matrix and matrix remodeling markers were used to assess the effect of Wnt on cartilage mechanoresponse. Finally, the same set-up was used to study the effect of loading in cartilage from patients with established OA.ResultsOur results confirm that physiological loading maintains expression of anabolic genes in non-OA cartilage, but indicate a deleterious effect of Wnt activation in the chondrogenic mechanoresponsiveness. This suggests that loading-induced regulation of cartilage markers occurs downstream of canonical Wnt signaling. Interestingly, our study highlighted contrasting mechanoresponsiveness in the model of Wnt activation and the established OA samples, with established OA cartilage maintaining its mechanoresponsiveness, and mechanical loading rescuing the chondrogenic phenotype.ConclusionThis study provides insights into the mechanoresponsiveness of human cartilage in both non-OA and OA conditions. These findings hold the potential to contribute to the development of strategies that optimize the effect of dynamic compression by correcting OA pathological cell signaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3