Relationships of crystallinity and reaction rates for enzymatic degradation of poly (ethylene terephthalate), PET

Author:

Schubert Sune W.,Thomsen Thore B.,Clausen Kristine S.,Malmendal Anders,Hunt Cameron J.,Borch Kim,Jensen Kenneth,Brask Jesper,Meyer Anne S.,Westh Peter

Abstract

AbstractBiocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as kinetic parameters for soluble PET fragments. The results indicate that a proficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at highXCvalues, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product occurs here. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3