On the role of mechanical feedback in synchronous to asynchronous transition during embryogenesis

Author:

Malmi-Kakkada Abdul N.ORCID,Sinha Sumit,Thirumalai D.

Abstract

Experiments have shown that during the initial stage of Zebrafish morphogenesis a synchronous to asynchronous transition (SAT) occurs, as the cells divide extremely rapidly. In the synchronous phase, the cells divide in unison unlike in the asynchronous phase. Despite the wide spread observation of SAT in experiments, a theory to calculate the critical number of cell cycles,n*, at which asynchronous growth emerges does not exist. Here, using a model for the cell cycle, with the assumption that cell division times are Gaussian distributed with broadening, we predictn*and the time at which the SAT occurs. The theoretical results are in excellent agreement with experiments. The theory, supplemented by agent based simulations, establish that the SAT emerges as a consequence of biomechanical feedback on cell division. The emergence of asynchronous phase is due to linearly increasing fluctuations in the cell cycle times with each round of cell division. We also make several testable predictions, which would further shed light on the role of biomechanical feedback on the growth of multicellular systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3