Feasibility of improving manufacturability based on protein engineering

Author:

Capito Florian,Wong Ting Hin,Faust Christine,Brand Kilian,Dittrich Werner,Sommerfeld Mark,Langer Thomas

Abstract

AbstractWhile bioactivity and a favorable safety profile for biotherapeutics is of utmost importance, manufacturability is also worth of consideration to ease the manufacturing process. Many biotherapeutics are typically expressed in mammalian cells. Process-related impurities or biological impurities like viruses and host cell proteins (HCP) are present in the harvest which have mostly acid isoelectric points and need to be removed to ensure safety for the patients. Therefore, during molecule design, an isoelectric point of the target molecule should preferably differ sufficiently from the isoelectric points of the impurities to enable an efficient and straightforward purification strategy. In this feasibility study we have evaluated the possibility to improve manufacturability by increasing the isoelectric point of the target protein. We have generated several variants of a GLP1-receptor-agonist-Fc-domain -FGF21 fusion protein and demonstrate that the critical anion exchange chromatography step can be run at high pH values with maximal product recovery theoretically allowing removal of HCP and viruses. Addressing the isoelectric point can be useful for an efficient process for removing HCP and viruses and this topic should be considered early in the research phase to ensure that other important molecule properties, e.g. safety, efficacy and expression yield are not impacted.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3