Combining full-length gene assay and SpliceAI to interpret the splicing impact of all possibleSPINK1coding variants

Author:

Wu Hao,Lin Jin-Huan,Tang Xin-Ying,Zou Wen-Bin,Schutz Sacha,Masson Emmanuelle,Fichou Yann,Le Gac Gerald,Férec Claude,Liao Zhuan,Chen Jian-MinORCID

Abstract

AbstractBackgroundSingle-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. However, reliable splicing analysis often faces practical limitations, especially when the relevant tissues are challenging to access. Whilein silicopredictions are valuable, they alone do not meet clinical classification standards. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exonSPINK1gene, a gene associated with chronic pancreatitis.ResultsWe initiated the study with a retrospective correlation analysis (involving 27 previously FLGSA-analyzedSPINK1coding SNVs), progressed to a prospective correlation analysis (incorporating 35 newly FLGSA-testedSPINK1coding SNVs), followed by data extrapolation, and ended with further validation. In total, we analyzed 67SPINK1coding SNVs, representing 9.3% of all 720 possible coding SNVs and affecting 19.2% of the 240 coding nucleotides. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through extensive cross-correlation of the FLGSA-obtained and SpliceAI-predicted data, we reasonably extrapolated that none of the unanalyzed 653 coding SNVs in theSPINK1gene are likely to exert a significant effect on splicing. Out of these 12 splice-altering events, nine produced both wild-type and aberrant transcripts, while the remaining three exclusively generated aberrant transcripts. These splice-altering SNVs were predominantly concentrated in exons 1 and 2, particularly affecting the first and/or last coding nucleotide of each exon. Among the 12 splice-altering events, 11 were missense variants, constituting 2.17% of the 506 potential missense variants, while one was synonymous, accounting for 0.61% of the 164 potential synonymous variants.ConclusionsIntegrating FLGSA with SpliceAI, we conclude that less than 2% (1.67%) of all possibleSPINK1coding SNVs have a discernible influence on splicing outcomes. Our findings underscore the importance of performing splicing analysis in the broader genomic sequence context of the study gene, highlight the inherent uncertainties associated with intermediate SpliceAI scores (i.e., those ranging from 0.20 to 0.80), and have general implications for the shift from “retrospective” to “prospective” analysis in terms of variant classification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3