Guiding diffusion models for antibody sequence and structure co-design with developability properties

Author:

Villegas-Morcillo AmeliaORCID,Weber Jana M.ORCID,Reinders Marcel J.T.ORCID

Abstract

AbstractRecent advances in deep generative methods have allowed antibody sequence and structure co-design. This study addresses the challenge of tailoring the highly variable complementarity-determining regions (CDRs) in antibodies to fulfill developability requirements. We introduce a novel approach that integrates property guidance into the antibody design process using diffusion probabilistic models. This approach allows us to simultaneously design CDRs conditioned on antigen structures while considering critical properties like solubility and folding stability. Our property-conditioned diffusion model offers versatility by accommodating diverse property constraints, presenting a promising avenue for computational antibody design in therapeutic applications. Code is available athttps://github.com/amelvim/antibody-diffusion-properties.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. Charles A. Janeway et al. Immunobiology: The Immune System in Health and Disease. Taylor & Francis Group UK: Garland Science, 2001.

2. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design;PLoS Computational Biology,2018

3. Wengong Jin , Jeremy Wohlwend , Regina Barzilay , and Tommi S. Jaakkola . Iterative refinement graph neural network for antibody sequence-structure co-design. In International Conference on Learning Representations (ICLR), 2022.

4. Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures;In Advances in Neural Information Processing Systems (NeurIPS),2022

5. Xiangzhe Kong , Wenbing Huang , and Yang Liu . End-to-end full-atom antibody design. In International Conference on Machine Learning (ICML), 2023.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive overview of recent advances in generative models for antibodies;Computational and Structural Biotechnology Journal;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3