Taxometer: Improving taxonomic classification of metagenomics contigs

Author:

Kutuzova SvetlanaORCID,Nielsen MadsORCID,Piera PauORCID,Nybo Nissen JakobORCID,Rasmussen SimonORCID

Abstract

AbstractFor taxonomy based classification of metagenomics assembled contigs, current methods use sequence similarity to identify their most likely taxonomy. However, in the related field of metagenomics binning contigs are routinely clustered using information from both the contig sequences and their abundance. We introduce Taxometer, a neural network based method that improves the annotations and estimates the quality of any taxonomic classifier by combining contig abundance profiles and tetra-nucleotide frequencies. When applied to five short-read CAMI2 datasets, it increased the average share of correct species-level contig annotations of the MMSeqs2 tool from 66.6% to 86.2% and reduced the share of wrong species-level annotations in the CAMI2 Rhizosphere dataset two-fold on average for Metabuli, Centrifuge, and Kraken2. Finally, we applied Taxometer to two complex long-read metagenomics data sets for benchmarking taxonomic classifiers. Taxometer is available as open-source software and can enhance any taxonomic annotation of metagenomic contigs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3