Incorporation of 5 methylcytidine alleviates innate immune response to self-amplifying RNA vaccine

Author:

Komori Mai,Morey Amber L.,Quiñones-Molina Andrés A.,Fofana Josiane,Romero Luis,Peters Elizabeth,Matsuda Kenta,Gummuluru Suryaram,Smith Jonathan F.,Akahata WataruORCID,Akiyama HisashiORCID

Abstract

AbstractIn order to improve vaccine effectiveness and safety profile of existing synthetic RNA-based vaccines, we have developed a self-amplifying RNA (saRNA)-based vaccine expressing membrane-anchored receptor binding domain (RBD) of SARS-CoV-2 S protein (S-RBD) and have demonstrated that a minimal dose of this saRNA vaccine elicits robust immune responses. Results from a recent clinical trial with 5-methylcytidine (5mC) incorporating saRNA vaccine demonstrated reduced vaccine-induced adverse effects while maintaining robust humoral responses. In this study, we investigate the mechanisms accounting for induction of efficient innate and adaptive immune responses and attenuated adverse effects induced by the 5mC-incorporated saRNA. We show that the 5mC-incorporating saRNA platform leads to prolonged and robust expression of antigen, while induction of type-I interferon (IFN-I), a key driver of reactogenicity, is attenuated in peripheral blood mononuclear cells (PBMCs), but not in macrophages and dendritic cells. Interestingly, we find that the major cellular source of IFN-I production in PBMCs is plasmacytoid dendritic cells (pDCs), which is attenuated upon 5mC incorporation in saRNA. In addition, we demonstrate that monocytes also play an important role in amplifying proinflammatory responses. Furthermore, we show that the detection of saRNA is mediated by a host cytosolic RNA sensor, RIG-I. Importantly, 5mC-incorporating saRNA vaccine candidate produced robust IgG responses against S-RBD upon injection in mice, thus providing strong support for the potential clinical use of 5mC-incorporating saRNA vaccines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3