An engineered glioblastoma model yields novel macrophage-secreted drivers of invasion

Author:

Akins Erin A.ORCID,Wilkins Dana,Aghi Manish K.ORCID,Kumar Sanjay

Abstract

AbstractGlioblastomas (GBMs) are highly invasive brain tumors replete with brain- and blood-derived macrophages, collectively known as tumor-associated macrophages (TAMs). Targeting TAMs has been proposed as a therapeutic strategy but has thus far yielded limited clinical success in slowing GBM progression, due in part to an incomplete understanding of TAM function in GBM. Here, by using an engineered hyaluronic acid-based 3D invasion platform, patient-derived GBM cells, and multi-omics analysis of GBM tumor microenvironments, we show that M2-polarized macrophages stimulate GBM stem cell (GSC) mesenchymal transition and invasion. We identify TAM-derived transforming growth factor beta induced (TGFβI/BIGH3) as a pro-tumorigenic factor in the GBM microenvironment. In GBM patients, BIGH3 mRNA expression correlates with poor patient prognosis and is highest in the most aggressive GBM molecular subtype. Inhibiting TAM-derived BIGH3 signaling with a blocking antibody or small molecule inhibitor suppresses GSC invasion. Our work highlights the utility of 3Din vitrotumor microenvironment platforms to investigate TAM-cancer cell crosstalk and offers new insights into TAM function to guide novel TAM-targeting therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3