Gibberellin Perception Sensors 1 and 2 reveal cellular GA dynamics articulated by COP1 and GA20ox1 that are necessary but not sufficient to pattern hypocotyl cell elongation

Author:

Griffiths JayneORCID,Rizza AnnalisaORCID,Tang Bijun,Frommer Wolf B.ORCID,Jones Alexander M.ORCID

Abstract

AbstractThe phytohormone gibberellin (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis and flowering. The FRET biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurementsin vivo, was previously used to observe a GA gradient correlated with cell length in dark-grown but not light-grown hypocotyls. We sought to understand how light signalling integrates into cellular GA regulation. Here we show how the E3 ligase COP1 and transcription factor HY5 play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of biosynthetic enzymeGA20ox1is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signalling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility to show the cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity and the GPS2 biosensor is an ideal tool for GA studies in further conditions, organs and plant species.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3