Regulators of health and lifespan extension in genetically diverse mice on dietary restriction

Author:

Di Francesco Andrea,Deighan Andrew G.,Litichevskiy Lev,Chen Zhenghao,Luciano Alison,Robinson Laura,Garland Gaven,Donato Hannah,Schott Will,Wright Kevin M.,Raj Anil,Prateek G.V.,Mullis Martin,Hill Warren,Zeidel Mark,Peters Luanne,Harding Fiona,Botstein David,Korstanje Ron,Thaiss Christoph A.,Freund Adam,Churchill Gary A.

Abstract

SummaryCaloric restriction (CR) delays aging and extends healthy lifespan in multiple species. Alternative forms of dietary restriction (DR) such as intermittent fasting (IF) have drawn significant interest as a more sustainable regimen, but the landscape of longevity-promoting dietary interventions remains largely unexplored. Identifying the most robust, efficacious, and experimentally tractable modes of DR is key to better understanding and implementing effective longevity interventions for human healthspan. To that end, we have performed an extensive assessment of DR interventions, investigating the effects of graded levels of CR (20% and 40%) and IF (1 day and 2 days of fasting per week) on the health and survival of 960 genetically diverse female mice. All interventions extended lifespan, although only CR significantly reduced the mortality doubling time. Notably, IF did not extend lifespan in mice with high pre-intervention bodyweight. We carried out extensive phenotyping to determine the health effects of long-term DR and to better understand the mechanisms driving within-diet heterogeneity in lifespan. The top within-diet predictor of lifespan was the ability of mice to maintain bodyweight through periods of handling, an indicator of stress resilience. Additional predictors of long lifespan include specific changes in immune cells, red blood cell distribution width (RDW), and retention of adiposity in late life. We found that lifespan is heritable (h2= 0.24), and that genetic background has a larger influence on lifespan than dietary interventions. We identified a significant association for lifespan and RDW on chromosome 18 that explained 4.3% of the diet-adjusted variation in lifespan. Diet-induced changes on metabolic traits, although beneficial, were relatively poor predictors of lifespan, arguing against the long-standing notion that DR works by counteracting the negative effects of obesity. These findings indicate that improving health and extending lifespan are not synonymous and that metabolic parameters may be inappropriate endpoints for evaluating aging interventions in preclinical models and clinical trials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3