Striatum supports fast learning but not memory recall

Author:

Reinhold KimberlyORCID,Iadarola Marci,Tang Shi,Kuwamoto Whitney,Sun Senmiao,Hakim Richard,Zimmer Joshua,Wang Wengang,Sabatini Bernardo L.ORCID

Abstract

AbstractAnimals learn to carry out motor actions in specific sensory contexts to achieve goals. The striatum has been implicated in producing sensory-motor associations, yet its contribution to memory formation or recall is not clear. To investigate the contribution of striatum to these processes, mice were taught to associate a cue, consisting of optogenetic activation of striatum-projecting neurons in visual cortex, with forelimb reaches to access food pellets. As necessary to direct learning, striatal neural activity encoded both the sensory context and outcome of reaching. With training, the rate of cued reaching increased, but brief optogenetic inhibition of striatal activity arrested learning and prevented trial-to-trial improvements in performance. However, the same manipulation did not affect performance improvements already consolidated into short- (within an hour) or long-term (across days) memories. Hence, striatal activity is necessary for trial-to-trial improvements in task performance, leading to plasticity in other brain areas that mediate memory recall.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3