Sex-dependent effects of angiotensin type 2 receptor expressing medial prefrontal cortex (mPFC) interneurons in fear extinction learning

Author:

Smith Hannah C.ORCID,Yu ZheORCID,Iyer LaxmiORCID,Marvar Paul J.ORCID

Abstract

ABSTRACTBackgroundThe renin-angiotensin system (RAS) has been identified as a potential therapeutic target for PTSD, though its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. We therefore used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neuron involvement in fear learning.MethodsTo characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/td-Tomato male and female mice were used for immunohistochemistry (IHC). mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+cells and colocalization with each marker was quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using an AAV-Cre virus. Mice then underwent Pavlovian auditory fear conditioning, approach/avoidance, and locomotion testing.ResultsIHC results revealed that AT2R is densely expressed in the mPFC. Furthermore, AT2R is primarily expressed in somatostatin interneurons in females but not males. Following fear conditioning, mPFC-AT2R deletion impaired extinction in female but not male mice. Locomotion was unaltered by mPFC-AT2R deletion in males or females, while AT2R-deleted females had increased exploratory behavior.ConclusionThese results lend support for mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons that influence fear extinction in a sex-dependent manner. This furthers underscores the role of mPFC in top-down regulation and a unique role for peptidergic (ie., angiotensin) mPFC regulation of fear and sex differences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3