Characterising the contribution of auditory and somatosensory inputs to TMS-evoked potentials following stimulation of prefrontal, premotor and parietal cortex

Author:

Biabani ManaORCID,Fornito Alex,Goldsworthy Mitchell,Thompson Sarah,Graetz Lynton,Semmler John G.,Opie George M.ORCID,Bellgrove Mark A.,Rogasch Nigel C.

Abstract

AbstractTranscranial magnetic stimulation (TMS) results in a series of evoked potentials (TEPs) in electroencephalography (EEG) recordings. However, it remains unclear whether these responses reflect neural activity resulting from transcranial stimulation of the cortex, or from the sensory experiences of TMS. Across three experiments (total n = 135), we recorded EEG activity following TMS to the dorsolateral prefrontal cortex, premotor cortex, and parietal cortex as well as a sensory control condition (stimulation of the shoulder or electrical stimulation of the scalp with a click sound). We found that TEPs showed a stereotypical frontocentral N100/P200 complex following TMS of all cortical sites and control conditions, regardless of TMS intensity or the type of sensory control. In contrast, earlier TEPs (<60 ms) showed site-specific characteristics which were largest at the site of stimulation. Self-reported sensory experiences differed across sites, with prefrontal stimulation resulting in stronger auditory (click sound perception) and somatosensory input (scalp muscle twitch, discomfort) than premotor or parietal stimulation, a pattern that was reflected in the amplitude of later (N100/P200), but not earlier (<60 ms) TEP peak amplitudes. Later TEPs were also larger in individuals who experienced stronger click sound perception and, to a lesser extent, TMS-evoked scalp muscle twitches. Increasing click sound perception by removing auditory masking increased N100/P200 amplitudes without altering earlier peaks, an effect which was more prominent at sites with more successful masking. Together, these findings suggest that the frontocentral N100/P200 complex represents a generalised sensory response resulting from TMS-related auditory and somatosensory input. In contrast, early TEP peaks likely reflect activity resulting from transcranial stimulation of the cortex. The results have important implications for designing and interpreting TEP studies, especially when comparing TEPs between stimulation sites and participant groups showing differences in sensory experiences following TMS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3