Interpretable Video-Based Tracking and Quantification of Parkinsonism Clinical Motor States

Author:

Deng Daniel,Ostrem Jill L.,Nguyen Vy,Cummins Daniel D.,Sun Julia,Pathak Anupam,Little Simon,Abbasi-Asl RezaORCID

Abstract

AbstractThe ability to quantify motor symptom progression in Parkinson’s disease (PD) patients is crucial for assessing disease progression and for optimizing therapeutic interventions, such as dopaminergic medications and deep brain stimulation. Cumulative and heuristic clinical experience has identified various clinical signs associated with PD severity but these are neither objectively quantifiable or robustly validated. Video-based objective symptom quantification enabled by machine learning (ML) introduces a potential solution. However, video-based diagnostic tools often have implementation challenges due to expensive and inaccessible technology, often requiring multi-camera setups, pristine video collection protocols, or additional sensors that are impractical for conventional use. Additionally, typical “black-box” ML implementations are not tailored to be clinically interpretable, either due to complex and unintuitive algorithms or a lack of analysis on feature stability and optimality. Here, we address these needs by releasing a comprehensive kinematic dataset and developing a novel interpretable video-based framework that accurately predicts high versus low PD motor symptom severity according to MDS- UPDRS Part III metrics. This data driven approach validated and robustly quantified canonical movement features and identified new clinical insights, not previously appreciated as related to clinical severity. Our framework is enabled by retrospective, single-view, seconds-long videos recorded on consumer-grade devices such as smartphones, tablets, and digital cameras, thereby eliminating the requirement for specialized equipment. Following interpretable ML principles, our framework enforces robustness and interpretability by integrating (1) automatic, data-driven kinematic metric evaluation guided by pre-defined digital features of movement, (2) combination of bi-domain (body and hand) kinematic features, and (3) sparsity-inducing and stability-driven ML analysis with simple-to-interpret models. These elements in our design ensure that the proposed framework quantifies clinically meaningful motor features useful for both ML predictions and clinical analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3