Guidelines for Performing Ribosome Profiling in Plants Including Structural Analysis of rRNA Fragments

Author:

Ting Michael K. Y.ORCID,Gao YangORCID,Barahimipour Rouhollah,Ghandour Rabea,Liu Jinghan,Martinez-Seidel FedericoORCID,Smirnova Julia,Gotsmann Vincent Leon,Fischer Axel,Haydon Michael J.ORCID,Willmund FelixORCID,Zoschke Reimo

Abstract

AbstractRibosome profiling (or Ribo-seq) is a technique that provides genome-wide information on the translational landscape (translatome). Across different plant studies, variable methodological setups have been described which raises questions about the general comparability of data that were generated from diverging methodologies. Furthermore, a common problem when performing Ribo-seq are abundant rRNA fragments that are wastefully incorporated into the libraries and dramatically reduce sequencing depth. To remove these rRNA contaminants, it is common to perform preliminary trials to identify these fragments because they are thought to vary depending on nuclease treatment, tissue source, and plant species. Here, we compile valuable insights gathered over years of generating Ribo-seq datasets from different species and experimental setups. We highlight which technical steps are important for maintaining cross experiment comparability and describe a highly efficient approach for rRNA removal. Furthermore, we provide evidence that many rRNA fragments are structurally preserved over diverse nuclease regimes, as well as across plant species. Using a recently published cryo-electron microscopy (cryo-EM) structure of the tobacco 80S ribosome, we show that the most abundant rRNA fragments are spatially derived from the solvent-exposed surface of the ribosome. The guidelines presented here shall aid newcomers in establishing ribosome profiling in new plant species and provide insights that will help in customizing the methodology for individual research goals.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3