Step-wise Hydration of Magnesium by Four Water Molecules Precedes Phosphate Release in a Myosin Motor

Author:

Mugnai M.L.,Thirumalai D.

Abstract

AbstractMolecular motors, such as myosin, kinesin, and dynein, convert the energy released by the hydrolysis of ATP into mechanical work, which allows them to undergo directional motion on cytoskeletal tracks. This process is achieved through synchronization between the catalytic activity of the motor and the associated changes in its conformation. A pivotal step in the chemomechanical transduction in myosin motors occurs after they bind to the actin filament, which triggers the release of phosphate (Pi, product of ATP hydrolysis) and the rotation of the lever arm. Here, we investigate the mechanism of phosphate release in myosin VI, which has been debated for over two decades, using extensive molecular dynamics simulations involving multiple trajectories each severalμslong. Because the escape of phosphate is expected to occur on time-scales on the order of milliseconds in myosin VI, we observed Pirelease only if the trajectories were initiated with a rotated phosphate inside the nucleotide binding pocket. The rotation provided the needed perturbation that enabled successful expulsions of Piin several trajectories. Analyses of these trajectories lead to a robust mechanism of Pirelease in the class of motors belonging to the myosin super family. We discovered that although Pipopulates the traditional “back door” route, phosphate exits through various other gateways, thus establishing the heterogeneity in the escape routes. Remarkably, we observe that the release of phosphate is preceded by a step-wise hydration of the ADP-bound magnesium ion. In particular, the release of the anion occurredonly after four water moleculeshydrate the cation (Mg2+). By performing comparative structural analyses, we suggest that the hydration of magnesium is the key step in the phosphate release in a number of ATPases and GTPases that share a similar structure in the nucleotide binding pocket. Thus, nature may have evolved hydration of Mg2+by discrete water molecules as a general molecular switch for Pirelease, which is a universal step in the catalytic cycle of many machines which share little sequence or structural similarity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3