Extracellular matrix mineralization in the mouse osteoblast-like cell line MC3T3-E1 is regulated by actin cytoskeleton reorganization and non-protein molecules secreted from the cells themselves

Author:

Suzuki Hiraku,Tatei Kazuaki,Ohshima Noriyasu,Sato Seiichi,Izumi Takashi

Abstract

AbstractBone tissue constantly undergoes turnover via bone formation by osteoblasts and bone resorption by osteoclasts. This process enables bone to maintain its overall shape while altering its local structure. However, the detailed mechanism of how osteoblast cell-signaling systems induce various structural changes in bone tissue have not yet been completely elucidated. In this study, we focused on the actin cytoskeleton as a regulatory system for bone formation and constructed an in vitro experimental system using the mouse osteoblast-like cell line MC3T3-E1. We found that, in MC3T3-E1 cells, the actin cytoskeleton had an important role in matrix mineralization via activation of specific developmental pathways and it was regulated by non-protein molecules secreted from MC3T3-E1 cells themselves. In MC3T3-E1 cells, we observed changes of actin cytoskeleton reorganization and accumulation of PIP2 related to actin filament convergences during cell differentiation, in the undifferentiated, early, middle and late stage. Actin cytoskeleton disruption with Cyto D, polymerization inhibitor of actin filament, in early and middle stage cells induced significant increase of osteocalcin mRNA expression normally expressed only in late stage, decrease of Alkaline phosphatase mRNA expression after 24h and abnormal matrix mineralization in MC3T3-E1 cells. Inhibition of Giα with PTX known to regulate actin cytoskeleton in middle stage induced changes in the actin cytoskeleton and PIP2 accumulation and suppression of matrix mineralization after 5 days. Furthermore, addition of non-protein molecules from culture medium of cells at various differentiation stage induced difference of PIP2 accumulation after 5 min, actin cytoskeleton in 20 min, and matrix mineralization after 5 days. These results not only provide new knowledge about the actin cytoskeleton function in bone-forming cells, but also suggest that cell signaling via non-protein molecules such as lipids plays important roles in bone formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3