Abstract
ABSTRACTGenome-wide association studies (GWAS) have identified over 150,000 links between common genetic variants and human traits or complex diseases. Over 80% of these associations map to polymorphisms in non-coding DNA. Therefore, the challenge is to identify disease-causing variants, the genes they affect, and the cells in which these effects occur. We have developed a platform using ATAC-seq, DNaseI footprints, NG Capture-C and machine learning to address this challenge. Applying this approach to red blood cell traits identifies a significant proportion of known causative variants and their effector genes, which we show can be validated by direct in vivo modelling.
Publisher
Cold Spring Harbor Laboratory
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献